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1. INTRODUCTION

We report here a classical trajectory study of mode specificity in the unimolecular decomposition of
CH,NNO,. Methylene nitramine, CH,NNO,), is believed to be the primary decomposition product of
hexahydro-1,3,5-trinitro-1,3,5-triazine, more commonly referred to as RDX (Zhao, Hintsa, and Lee 1988).
CH,NNO, has never been isolated, but appears to decompose spontaneously to form simple di- and
triatomic products (Zhao, Hintsa, and Lee 1988). The experimental results show that of two possible

primary decomposition reactions,

[1] CH,NNO, — H,CN + NO,

(2] CH,NNO, — HCN + HONO (or HNO,),

CH,NNO, decomposes only through concerted reaction (Zhao, Hintsa, and Lee 1988).

Classical trajectories (Rice et al., to be published), integrated under microcanonical conditions in which
sufficient energy for reaction was partitioned statistically among the internal modes of the molecule,
indicate that Reaction [1] is more probable, in direct contradiction to the experimental observation. This

observation raised several questions, some of which are reviewed and addressed here.

Mowrey et al. (1990) suggested that either (a) Reaction [1] has an anomalous behavior in the rate,
which makes this reaction improbable, or (b) Reaction {2] has a substantially lower activation energy than
Reaction [1]. They investigated the latter case by performing multiconfigurational (MC) SCF and
multireference (MR) CI calculations at critical points along the reaction paths for Reactions [1] and [2].
They estimated that the activation energy of Reaction [2], 31 14 kcal/mol, is lower than, or at least
comparable (within the error of their calculations) to the dissociation energy of the N-N bond
(35 +4 kcal/mol).

We investigated the possibility of anomalous behavior of the reaction rates in a classical trajectory
study of the unimolecular decomposition of CH,NNO, (Rice et al., to be published). We developed a
potential energy surface (PES) based on the Mowrey et al. (1990) results that reproduced the properties
of the reactant, transition state leading to Reaction [2], and the products of both reactions. Structures, the

corresponding energies and energy second derivatives at critical points and reaction path points predicted




by the ab initio calculations (Mowrey et al. 1990) were used to parameterize the analytic PES (Rice et al.,
to be published). Additionally, we incorporated experimental data for the products, where available, in
our model. We integrated classical trajectories over the energy range 61 to 121 kcal/mol (including the
zero-point energy), with the energy partitioned statistically among the internal modes via Metropolis Monte
Carlo sampling (Metropolis et al. 1953; Raff and Thompson 1985). The results indicate that at all
energies, Reaction [1] is most probable, but with Reaction [2] becoming increasingly important at higher
energies. The rate coefficients are well-behaved with increasing energy and can be accurately fitted by
the statistical RRK model of unimolecular reactions (Robinson and Holbrook 1972). The results of this
study answered one of the questions raised by~Mowrey et al. (1990): The rate constant for Reaction [1]
has no anomalous behavior with increasing energy. Additionally, the dynamics calculations indicate that

Reaction [1] is favored, except at the limit of high energy.

The results of the previous trajectory study (Rice et al., to be published) indicate that a more thorough
understanding of the reaction dynamics of this molecule are needed to augment the conclusions of the
experimental study (Rice et al., to be published). If the system has no anomalous behavior in the decay
rates, and if the energetics of the reaction channels are correctly described in the model, why was
Reaction [1] not observed in the experiment (Zhao, Hintsa, and Lee 1988)? In the present study, we
investigate the possibility that upon formation of CH,NNO, through the decomposition of RDX, energy
is either placed directly into the reaction coordinate leading to Reaction [2] or into internal modes that are

strongly coupled to that reaction coordinate.

Our investigation into this possibility is of interest not only for this specific chemical system, but for
reaction dynamics in general. Mode-specific reaction for chemically bound systems has not been widely
observed, mainly because randomization of energy among the internal modes of a molecule occurs before

reaction can take place, even if the energy is initially placed into a specific local mode.

The results of this study show that CH,NNO, exhibits nonstatistical, mode-specific behavior when
certain normal modes of vibration are excited. There is substantial enhancement of the rates for both
Reactions {1] and [2] as well as changes in branching ratios upon excitations of certain modes. We

provide a simple analysis to show why the mode-specific reactions occur.




2. POTENTIAL ENERGY SURFACE

The analytic form, parameters values, and a description of features of the PES are given in Rice et
al. (to be published). Reactant and transition state structures predicted by the model PES agree with the
ab initio structures to within 0.5%. Also, the normal modes of vibration for the reactant and transition
state species predicted by the model PES are in good agreement with the ab initio predictions (Mowrey
et al. 1990). Additionally, the PES was fitted to points along the reaction path for Reaction [2] calculated
by Mowrey et al. (1990). The model PES predicts an activation energy of 31.8 kcal/mol, in good
agreement with the Mowrey et al. estimate. The dissociation energy of the N-N bond in the model was
fixed at 35 kcal/mol, the value determined by Mowrey et al. (1990). Figures 1 and 2 show, respectively,
the eigenvectors of the normal modes of vibration, predicted by the ab initio (Mowrey 1990) calculations

and by the analytic PES used in this study.
3. METHODS

Classical trajectories were integrated using a variable-step size Adams-Moulton fourth-order predictor-
corrector integrator (Miller and George 1972), with error tolerance set to 1077, The trajectories were

integrated in a lab-fixed cartesian coordinate frame.

The energy of the system for each ensemble described below is 57.7 kcal/mol above the zero-point
energy of the molecule (27.5 kcal/mol), for a total of 85.2 kcal/mol. Two methods were used to select

initial conditions.

The first is Metropolis Monte Carlo (Metropolis et al. 1953) selection of initial conditions, with the
angular momentum restricted (Viswanathan, Raff, and Thompson 1985) to zero. This selection ensures
that energy will be partitioned statistically among the vibrational modes of the molecule. A total of 2,000
trajectories, including trajectories recounted according to the standard Metropolis sampling procedure
(Metropolis et al. 1953; Raff and Thompson 1985), were calculated. This ensemble will be denoted
throughout this report as the reference set and is used for comparisons with the results of ensembles with
mode-selective initial conditions. The angular momentum was restricted in the initial condition selections
of this ensemble, because we want to make this calculation comparable to those in which normal modes

are excited. Also, the maximum bond extensions were restricted to confine initial condition selection to
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the reactant configuration space. The N-N and C-H bonds were limited to less than 2.0 and 1.2 A,
respectively, and the H-O bond was restricted to be greater than 1.6 A

The second method of initial condition selection involves first distributing zero-point energy among
the normal modes of vibration, then placing 57.7 kcal/mol into one of the 15 normal modes of the
molecule. The energy of each mode is partitioned according to a randomly-selected phase of the vibration
from the appropriate distribution (Raff and Thompson 1985; Bintz 1986). Once the vibrational phase is
selected, the difference in the energy calculated in the normal mode approximation and the potential
energy using the model PES is determined and added in the form of kinetic energy to the vibrational
modes. Occasionally, the potential energy calculated with the model PES exceeds the harmonic normal
mode energy. In these cases, the initial conditions were rejected. Additionally, initial conditions were
rejected if they violated the restrictions on bond extensions, as described in the previous paragraph. Each
ensemble with initial conditions selected in this manner consisted of at least 1,000 trajectories. At least
2,000 trajectories were included in the ensembles that showed nonstatistical (i.e., nonlinear) behavior in
the decay curves, to make certain the features were reproducible. The different ensembles will be referred
to by the vibrational frequericy (in cm™?) of the normal mode that is initially excited to 57.7 kcal/mol

above the zero-point energy.

Trajectories for both types of initial conditions were integrated until conditions specified in Table 1
were met. When the end-tests specifying HONO formation, Reaction [2], were satisfied, a second set of
end-tests were triggered and the trajectory was continued until the second set of end-tests (for secondary

reaction of HONO) were satisfied or until 20 ps total integration time elapsed.

The overall decay rate for a system that decomposes through two competing paths can be expressed

as:

ko1 €an be obtained by the fitting of trajectory results to

I[P = ke o1t )

where [P] is the fraction of unreacted CH,NNO, at time t. The individual rate coefficients k; and K, are

equal to the branching ratio




Table 1. End Tests

Primary Decomposition Reactions

CH,NNO, — H,CN + NO,
Ran > 50 A, Repyy < 20 A, Reyypy <20 A

CH,NNO, — HONO’ + "HCN
Rey > 2.0 A, Royy < 1393 A, Ry < 2.0 A and Dy, Doy < 1074 eV

Secondary Decomposition/Isomerization Reactions

HONO’ — H + ONO’
Rgo > 50A

HONO’ —- ONO’H
Ryo > Ryor

HONO’ — HO + NO’
Rno > 5.0 A, Ry < 2.0 A

k;/ky =N, /N, 3)

where N; is the number of products for Reaction i, i=1 or 2. The ratio N; / N, is computed as a function

of time.
4. RESULTS AND DISCUSSION

We have used classical trajectories to investigate mode selectivity in CH,NNO,. We calculated decay
curves for initial conditions corresponding to excitation of each of the 15 normal modes. For comparison,

we calculated one ensemble with the total energy distributed randomly among all the vibrational modes.

The computed decay curves are shown in Figure 3 for the 16 sets of initial conditions. The plot in
Figure 3a is for the statistical initial conditions obtained by using Metropolis sampling. The remaining
plots [frames (b)—(p)] in Figure 3 are for initial conditions corresponding to excitations of 57.7 kcal/mol
of each of the 15 normal modes; the plots are arrangeq in order of increaéing frequency of the excited

mode.
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Figure 3. Decay curves for (a) Reference set (statistical initial conditions); (b) Mode 101; (c) Mode 275;
(d) Mode 442; (e) Mode 560; (f) Mode 606; (g) Mode 753; (h) Mode 894; (i) Mode 1246;
(D Mode 1263, (k) Mode 1323; (1) Mode 1454; (m) Mode 1613; (n) Mode 1843;
(0) Mode 3363; and (p) Mode 3489. The resuits are for total energy of zero-point energy plus
57.7 kcal/mol excitation with zero angular momentum. All of the plots show simple first-order
decay except for those in frames (c), (d), and (g), which consist of two linear regions.




All but three [frames (c), (d), and (g)] of the plots in Figure 3 are linear over the time period (20 ps) of
the trajectory integrations. The three nonlinear plots consist of two linear regions. There are "fast” and
"slow" portions in these curves. The "fast" portion of the curves occurs between 0.0 and 0.4-0.5 ps for
Figures 3c, 3d, and 3g. These are trajectories for which Modes 275, 442, and 753 were excited to
57.7 kcal/mol above the zero-point energy. We fitted Equations (2) and (3) to both the "fast" and "slow"

portions of the curves in Figures 3c, 3d, and 3g and extracted rate coefficients for each region.

Plots of the branching ratios [see Equation (3)] are shown in Figures 4 and 5. The results shown in
Figure 4 are for those ensembles with mode selected initial conditions that give linear decay curves (see
Figure 3). Figure 5 shows the branching ratio plots for the "reference” ensemble with an initial random

distribution of energy [frame (a)] and for the ensembles that yield nonlinear decay curves. The latter

(Figures 5b—d) are also nonlinear, as expected.

The results of the fits for each set of decay and branching ratio curves are shown in Table 2.
Additionally, we have illustrated the rate coefficients kp,.;, k;, and k, in Figure 6 as functions of initial
condition selection. The label "Reference” denotes initial conditions selected with angular-momentum
restricted metropolis sampling (Raff and Thompson 1985; Miller and George 1972), and the frequency
labels denote the mode that is excited above the zero-point energy. For those three modes that have two
linear regions in the decay curves (Modes 275, 442, and 753), we have used the rate coefficients extracted
from the "slow" portion of the decay curve. kq ., in this figure is 0.11 £0.01 psh; k; and k, are 0.07 and
0.04 £0.01 ps'l, respectively.

The agreement of the mode-selected results for modes that have a single linear decay curve with the
reference set indicates that the decay rates are statistical. Also, the slow portion of the curves that have

two linear regions predict the same rate coefficients as the results that show statistical behavior.

The rate coefficients calculated from the fast portion of the Mode 275 curve, shown in Table 2,
indicate that Reactions [1] and [2] are substantially enhanced, with HONO formation favored slightly.
The rates for Reactions [1] and [2] are also enhanced when Mode 442 is excited, but the effect is most
pronounced for Reaction [1]. Excitation of Mode 753 causes some enhancement of the rates for

Reactions [1] and [2] but not to the degree upon excitation of Modes 275 and 442.
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Figure 4. Branching ratios for (a) Mode 101; (b) Mode 560; (c) Mode 606; (d) Mode 894; (e) Mode
1246; (f) Mode 1263; (g) Mode 1323: (h) Mode 1454; (i) Mode 1613; (j) Mode 1843; (k)
Mode 3363; and (1) Mode 3489. These linear plots correspond to the linear decay curves
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Table 2. Decay Coefficients and Branching Ratios

Ensemble | kpo 057D | K (57D | ko (os™) | K/ K
Reference 0.11 0.07 0.04 1.6
101 0.12 0.55 0.04 2.3
275 (fast) 1.13 0.07 0.59 0.9
(slow) 0.11 1.18 0.04 1.9
442 (fast) 1.29 0.07 0.11 11.3
(slow) 0.11 0.07 0.04 1.9
560 0.11 0.07 0.04 1.7
606 0.11 0.18 0.04 1.9
753 (fast) 0.40 0.07 0.22 0.8
(slow) 0.11 0.08 0.04 2.1
894 0.11 0.08 0.03 2.4
1246 0.11 0.07 0.04 1.9
1263 0.11 0.08 0.04 1.9
1323 0.11 0.07 0.04 2.1
1454 0.11 0.06 0.04 1.9
1613 0.10 0.07 0.04 1.7
1843 0.11 0.07 0.04 1.8
3363 0.11 0.07 0.04 1.8
3489 0.11 0.07 0.04 1.8

Ensemble averages and statistical information are listed in Table 3. Substantial fractions of trajectories
in the ensembles contribute to the fast portion of the decay curves. Approximately 33%, 45%, and 18%
of the total number of trajectories for the ensembles corresponding to Modes 275, 442, and 753,

respectively, react within the time of the "fast" portion of the decay curves.

Why do these particular modes exhibit selective behavior in the reactions and the others do not? The
answer is not evidence from a simple inspection of the normal modes. For example, based on inspection
of the normal mode eigenvectors, one might predict that excitation of Mode 275 might increase the rate
of Reaction [2] since its motion appears to be related to the Reaction [1]). However, this same simple
inspection would not lead one to conclude that excitation of Mode 753 would show enhancement.
Furthermore, based only on the normal mode representations shown in Figure 1, one might predict that

excitations of Modes 606, 1246, and perhaps 1323 would show enhancement of Reaction [2]. Clearly,

such a simple method of analysis by inspection is insufficient.

13




Table 3. Ensemble Results: Primary Decomposition Reactions

Total Total Total Total
Ensemble? Trajectories | Reactions | Reaction [1] | Reaction [2]?

Reference 2,505 2,215 1,388 827 (23)

101 1,000 897 635 262 (2)

275 (fast, 0.0-0.4 ps) 616 616 346 270 (4)
(slow, 0.4-20. ps) 1,496 1,333 861 472 (39)
442 (fast, 0.0-0.5 ps) 793 793 737 56 (0)
(slow, 0.5-20. ps) 954 847 564 283 (6)
560 1,122 993 630 363 (8)

606 1,000 890 583 307 (8)

753 (fast, 0.0-0.5 ps) 370 370 177 193 (0)
(slow, 0.5-20. ps) 1,945 1,706 1,141 565 (14)
894 1,000 873 616 257 (6)

1246 1,000 893 576 317 4)

1263 1,141 1,001 648 353 (5)

1323 1,000 893 589 34 (3)

1454 1,000 878 565 313 (9)

1613 1,000 848 517 331 (4)

1843 999 856 553 303 4)

3363 1,000 866 553 313 (4)

3489 1,000 863 552 311 (5)

3Values in parentheses are the number of trajectories resulting in secondary HONO decomposition.

Although the coupling between the selected mode and the reaction coordinate at the reactant
equilibrium geometry is necessary, as assumed in the analysis by inspection of the normal modes discussed
previously, mode specificity depends on the coupling well along the reaction coordinate (perhaps up to
the transition state). And, of course, it also depends on the couplings of the selected mode to the "bath”
modes, that is, those not associated with the reaction coordinate; these couplings determine the rate of
energy randomization. Waite and Miller (1981) used this sort of analysis in a study of a model system
(a Modified Henon-Heiles potential [Henon and Heiles 1964)).

We have determined the minimum energy paths for Reactions [1] and [2] using the definition given
by Miller, Handy, and Adams (1980). These are shown in Figures 7 and 8. The reaction path is defined
as the path of steepest descent from the saddle point toward reactant or product. Because Reaction [1]
has no saddle point, but rather a barrier equal to the reaction endothermicity, we used the approximation
of large N-N separation to begin the steepest descents (see Rai and Truhlar [1983]). The reaction paths
were calculated using the POLYRATE 5.0.1 set of computer codes (Lu et al. 1992; Liu et al. 1993).
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To determine the extent of the coupling of each vibrational mode of CH,NNO, with the two reaction
coordinates, we projected its eigenvector onto the eigenvectors for points all along the reaction path that
correspond to the direction along the reaction path, as defined in Miller, Handy, and Adams 1980. The
results of the projections of the normal modes of vibration onto the reaction paths of Reactions [1] and [2]
are shown in Figure 9. Figure 9a shows the projection of the vibrational modes onto the reaction path
for Reaction [1]; clearly Modes 275, 442, and 753 have the largest projections onto the path for N-N
distances less than 2.5 A. For N-N distances greater than 2.5 A, the projection of vibrational Mode 275

is small while the projections of Modes 442 and 753 remain large. The other modes do not strongly

project into this reaction coordinate.

Figure 9b shows the projection of the vibrational modes onto the reaction path for Reaction |[2]. The
value of s = —4.5 a, is near equilibrium CH,NNO, and s = 0.0 a, corresponds to the saddle point for
Reaction [2]. For s in the range —4.5 to 2.5 a, only Modes 442, 753, and 606 show substantial coupling
with the reaction coordinate. For s greater than —-2.5 a_, Modes 275 and 606 project most strongly onto
this reaction path. If Mode 606 did not project onto the coordinate for Reaction [2], we would conclude
that projection of a vibrational motion on the reaction coordinate is not only necessary, as shown by Waite
and Miller (1981), but sufficient to show mode-specific chemistry for this system. However, excitation
of Mode 606 does not give mode-specific reaction. The decay curve for this mode and the resulting rate
coefficients are in good agreement with the result for the statistical reference set. Why does this
vibrational mode show no mode specificity when it clearly projects onto the reaction coordinate for
Reaction [2]? It is because mode-specific dynamics depend on the rate of energy randomization vs. the

rate of the chemical process.

To investigate this, we monitored the normal mode energies for the first 0.1-0.25 ps for 50 trajectories
randomly selected from each of the ensembles in which the 275, 442, 606, and 753 modes were initially
excited (Figures 10—13,Arespectively). Figure 10 shows the results for the ensemble in which Mode 275
is excited; energy rapidly transfers out of this mode into many other modes, including Modes 753 and 442.
The total average harmonic energy quickly exceeds the actual energy calculated using the model PES,
indicating that the normal mode approximation at this level of excitation is poor. However, this
representation of energy flow with respect to vibrational motion is the simplest way to follow the energy
changes due to those motions in a system of this complexity. Note that motion corresponding to

Mode 606 receives little excitation.

17




‘SUONO>EAT OM] U JOJ SIBUIPIO0D UONOEal oyl SUO[e SIUl
SNOLIEA T8 Pae[Nded ST ied UONJea 941 JUOJE UONIIIP 9] O] SUIPUOASalIod 101754 IUN AUL “[Z] GONIEaY (Q) Pue [1] UOToeay (®) 10]

Yred uonsear 3ty UOTe STUTod Jew) 101094 TGN 34} 0JUO (WNLQIINDS 18) “ONNCH.) JO Spoul [EUiion 3] jO SI0JI0AUSSId 3] JO uonodloig ‘6 andiy

(1qoq) HLVNIAY00I NOLLOVAYT
0 g0 I- a1- ¢ GG & ¢'g- N m.vw

68¥¢
£98E

E¥81

NOILLOHrOdd

€191

yavi

(swoxysduy) (N-N)H
I'€ 66 Lg% €% €% 1% 61 LI €¢I

—-.._-.;-..-—._._..._-._..._..-—-.-_-.- .HI

€2e1

g4t
€9L
909

(444

R REEREEEE

QLe

NOILLDOHfOHYd

18



- 101
—o— 275

—h— 442
—o— 560

—O— 1246
—%- 1263

= 1323

-1 606
—-O— 753
—— 894
0O 1454

8- 1843

—> 3363

-8 1613

3489

—

G

1

012 0.14

0.1

I

0.02 0.04 006 0.08

Sp— !

70-

e
S
=

T T T ————m——

S o o
B ¥ ®
(Tow/Tedy) ()

19

TIME (ps)

The legend

Figure 10. Normal mode energy vs. time averaged over 50 trajectories for which 57.7 kcal/mol was initially piaced in Mode 275.

denotes the nomal mode by its frequency in cm”.
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Figure 11, which shows the average normal mode energies for 50 trajectories randomly selected from
the mode-excited 442 ensemble, is similar to Figure 10; energy rapidly transfers from Mode 442, first to
753 and then to many other modes, including Mode 275. In this case, Mode 606 is excited along with
many of the other vibrations. Figure 12 shows the results of averaged normal mode energies for
trajectories selected from the ensemble of mode-excited 753; energy rapidly transfers from this mode,
mainly into Modes 442, 3363, and 1613. Mode 275 does not receive much of the energy. The reaction

rate for this ensemble shows the least enhancement of the three ensembles that exhibit mode-specific

reaction.

Figure 13, which shows the average normal mode energies for trajectories from mode-excited 606,
is substantially different from Figures 10-12 over the same time interval. Fewer modes become excited
due to energy transfer out of Mode 606. We followed the energy transfer twice as long as for the other
modes to see if the energy would randomize among all the modes, as seen in the other cases. The modes
that receive the most energy are 3363, 1613, and 1454. None of these vibrational modes show mode-
specific effects in the decomposition dynamics. Note that in this ensemble, modes corresponding to the
motions that yield enhanced reaction, 275, 442, and 753, show little, if any, excitation due to the energy

transfer.

The trajectory results and this simple analysis using the projection of the vibrational modes onto the
reaction coordinates show that while vibrational coupling to the reaction coordinate is necessary to cause
mode-specific behavior, the energy for reaction must remain trapped among modes coupled to the reaction
coordinates rather than leak out to modes that are not coupled to the reaction coordinates. This clearly
is the case with Mode 606, which shows strong pmjéction onto the path for Reaction [2] yet transfers
energy into modes that are not coupled into the reaction coordinate. It would appear that the energy
transfer into these "bath” modes is faster than energy transfer to the reaction coordinate. On the other
hand, the modes that exhibit specificity are both coupled to the reaction coordinates and at least one of
the other "coupled" vibrational modes (modes with frequencies 275, 442, and 753 cm™). This suggests
that the energy necessary for reaction is "trapped" among modes that couple strongly with the reaction
coordinate long enough for the energy to flow into a reaction coordinate leading to the increased reaction

rate.

We also investigated combinations of mode excitations to determine if they further enhance the rates.

Partitioning the excitation energy equally into pairs of modes that did not exhibit mode-specific behavior
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did not change the decomposition dynamics; the decay curves appeared linear with the same slope as the
statistical ensemble. We put 28.85 kcal/mol into each of Modes 275 and 442 (for a total of 57.7 kcal/mol)
and calculated an ensemble of approximately 2,500 trajectories. The resulting decay and branching ratio
curves are shown in Figures 14 and 15. The fast portion of the decay curve (shown along with the linear
fit of Equation (2) in the inset of Figure 14) occurs over the range 0.0-0.15 ps. The slope of the slow
portion of the decay curve matches the statistical (reference) ensemble result. One-third of the reactions
occur by 0.15 ps. The fit of Equation (2) to the fast portion of the decay curve predicts that the rate for
Reaction [2] is increased by 6,700% above the statistical rate, and Reaction [2] is favored over

Reaction [1] by a factor of 4.6. The rate for Reaction [1] is increased by 750% above the statistical value,

and is similar to the result when Mode 275 is singularly excited.

5. SUMMARY

We have presented the results of classical trajectory calculations of the unimolecular decomposition
of CH,NNO, for mode-selective initial conditions. The two primary decomposition pathways of this
molecule are (I) simple scission of the N-N bond to form H,CN and NO, and (II) concerted dissociation
via a five-centered transition state to form HONO and HCN. Fifteen ensembles of 1,000 to 2,500
trajectories, each corresponding to a specific vibrational mode excited to 57.7 kcal/mol above the zero-
point energy, provided decay curves and branching ratios, from which rate coefficients were determined.
Three of the decay curves, corresponding to ensembles of trajectories in which modes with frequencies
275, 442, and 753 cm™! were excited to 57.7 kcal/mol, showed two regions of linear behavior. The curves
are similar in that the portions of the decay curves with a steeper slope (denoted the fast region) ranged
from O to 0.5 ps and the portions of the curves with the more gradual slope (the slow region) resembled
the result for random initial conditions. The fast region of the curves showed that rates for Reactions [1]
and [2] are increased, with the most dramatic enhancement occurring for excitation of the modes with
frequencies 275 and 442 cm™! (see Figures 1 and 2 for definitions of the normal modes). Trajectories
corresponding to excitation of the normal mode with frequency 275 cm™! shows almost equally enhanced
rates for Reactions [1] and [2], while the rate of Reaction [1] is increased by over an order of magnitude
upon excitation of the normal mode with frequency 442 cm™. Although excitation of the mode with
frequency 753 cm™! leads to an increased rate, the effect is ot nearly as dramatic as for the modes with
frequencies 275 and 442 em™, Decay curves and branching ratios obtained from ensembles of trajectories
corresponding to excitation of one of each of the remaining 12 vibrational modes are linear, and agree

with the results for random initial conditions.
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Decay curve for trajectory ensemble in which 57.7 kcal/mol above the zero-point energy is
equally partitioned to Modes 275 and 442. The inset shows the region of the decay curve
from 0.0 —0.15 ps, and the fit of this region to equation (2). Approximately one-third of &'
reactions occur within this time range under these initial conditions.
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The basis of the mode specificity is illustrated by projecting the eigenvectors of the normal modes of
vibration of CH,NNO, onto the reaction paths for Reactions [1] and [2]. The modes that exhibit
selectivity in the reactions project strongly onto the two reaction paths. An additional vibrational mode
(frequency 606 cm™?) also projects strongly onto the path for Reaction [2] but shows no enhancement of
the rate. Our results indicate that energy transfers oﬁt of the mode with frequency 606 cm™! into

vibrational modes that are not coupled to the reaction coordinates more quickly than it flows into the

1

reaction coordinates. The modes with frequencies 275, 442, and 753 cm™" are coupled among themselves,

and as energy transfers out of one of these, it flows into other mode(s) that project onto the reaction

coordinates. In other words, the energy is trapped in modes that are strongly coupled to the reaction

coordinates.

In addition to confirming conditions necessary for mode-specific reaction, we have given credence to
the possibility that upon formation of CH,NNO, through the decomposition of RDX, reaction energy is
placed preferentially into the reaction coordinate for Recaction [2] or into vibrational modes that are
strongly coupled to the reaction coordinate for Reaction [2]. This could explain why concerted reaction

is singularly observed (Zhao, Hintsa, and Lee 1988) at the expense of the simpler bond-rupture reaction.
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